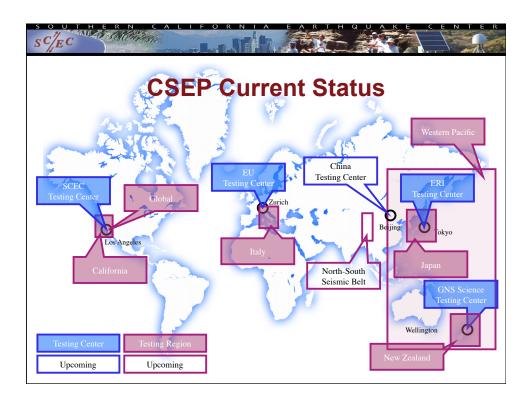

CSEP Progress and Plans

Thomas H. Jordan
Director, SCEC
Danijel Schorlemmer
Chief Scientist, CSEP

Original CSEP Objectives

- **O1.** Establish rigorous procedures for registering and evaluating prediction experiments
- O2. Construct community standards and protocols for comparative testing of predictions
- O3. Develop an infrastructure that allows groups of researchers to participate in prediction experiments
- O4. Provide access to authorized data sets and monitoring products for calibrating and testing prediction algorithms
- **O5.** Accommodate experiments involving fault systems in different geographic and tectonic environments



CSEP Progress

- Achieved 3-year project objectives
 - Reviewed by W. M. Keck Foundation in Dec '08
- Continued global expansion
 - Italy
 - Japan
 - China
- · In 4th year of development, using residual funding
 - Personnel: D. Schorlemmer, M. Liukis
 - Highly leverage within SCEC and internationally
- Preparing USGS proposal
 - NEPEC review completed in May, 2009
 - Developments now oriented toward facilitating NEPEC/CEPEC evaluations and operational earthquake forecasting

CSEP Development Objectives

- Expand testing methods
 - Alarm-based testing
 - Scoring methods based on contingency tables
- Test forecasts at larger magnitudes
 - Expanded set of natural laboratories ✔
 - Global testing program ✔
 - Model classes for legacy methods; e.g., M8/MSc
 - Testing of fault-based models
- Establish reference models to quantify skill
 - Long-term time-independent models
 - Short-term ETES models
- Testing of U.S. operational models
 - STEP(✓), NSHMP, UCERF3

ICEF Findings & Recommendations

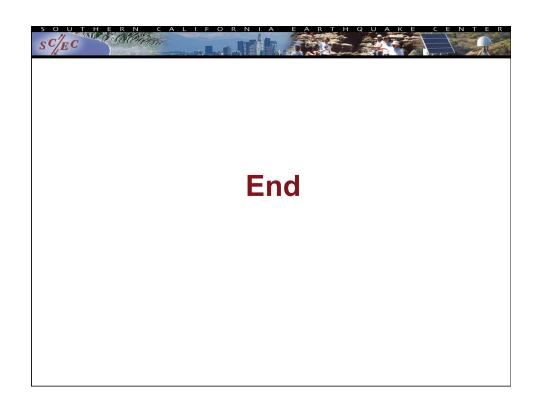
- Verification of Earthquake Forecasting Methods
 - Forecasting models considered for operational purposes should demonstrate reliability and skill with respect to established reference forecasts, such as long-term, time-independent models.
 - Recommendation F1: Forecasting methods intended for operational use should be scientifically tested against the available data for reliability and skill, both retrospectively and prospectively. <u>All operational models should be under continuous prospective testing.</u>
 - Recommendation F2: The international infrastructure being developed to test earthquake forecasting methods prospectively should be used as a tool for verifying the forecasting models for Italy.

Operational Earthquake Forecasting

- Criteria for the "operational fitness" of earthquake forecasts:
 - Consistency: correspondence of forecasts in one range of spatiotemporal scales with those in another
 - Quality: correspondence of forecasts with observations
 - Value: incremental benefit of forecasts to users
- · CSEP's primary role is to evaluate forecast quality
 - There are many aspects of forecast quality
 - Absolute verification: accuracy, reliability, resolution, sharpness, discrimination
 - · Relative verification: skill (of various types)
- CSEP reference models will also promote consistency
 - Unification across temporal and spatial scales (e.g. UCERF3)

CSEP Development Objectives

- Support for UCERF3 development
 - Build testability into UCERF3 (retrospective and prospective)
 - Establish UCERF3 as California reference model
- Test scientific hypothesis that underlie forecasting methods
 - Maximum magnitude based on fault geometry
 - Characteristic earthquakes; rupture arrest by identified segment boundaries
 - Modulation of earthquake rates by Coulomb stress
 - Ability of rupture to jump fault gaps
 - Stress renewal


CSEP Development Objectives

- Expand prospective testing to models based on nonseismic data
 - Continue to accept time-independent models ✔
 - Black-box testing of time-dependent models, including predictions based on diagnostic precursors
 - Develop authoritative data streams for time-dependent models (e.g. geodesy, tidal loading)
- Expand retrospective testing over the entire history of instrumental catalogs
 - Characterize catalog non-stationarity
- · Test in real-time
 - Reduce testing latency by modeling catalog completeness and accuracy as a function of time

CSEP Development Objectives

- Develop tools to help NEPEC and CEPEC deal with seismic crises and emergent situations
 - "Evaluate now" function for immediate evaluation of forecast probabilities during crisis
 - Rapid-response Content Management System for posting results and sharing information
- Expand to include the testing of ground-motion predictions
 - Retrospective and prospective testing
 - NGA and CyberShake predictions
- Support other prospective testing activities
 - Earthquake early warning
 - Geodetic transient detection

